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Abstract
A Clifford manifold of n dimensions is defined by the fundamental relation
{eµ(x), eν(x)} = 2gµν(x)1 between the n frame field components {eµ(x)} and
the metric matrix {gµν(x)}. At any point x, the tangent space, orthonormal
frames and the spin group are defined in terms of the frame field. Different
types of field are classified in terms of their properties under the general
linear coordinate transformation group on the manifold, and under spin group
transformations. Connections for different types of field are determined
by their covariance properties under these two groups. The bivector spin
connection is then uniquely determined by the ‘uniformity assumption’ for
Clifford algebraic grades. A key result is established, that the frame field
is necessarily covariantly constant on a Clifford manifold, with both vector
and spin connections. ‘Spin elements’ are formed by contracting the frame
field with Riemannian vector fields, and possess a ‘two-sided’ commutator
covariant derivative. A set of Riemannian fields orthonormal with respect to
the manifold defines an orthonormal set of spin elements in the tangent space,
from which idempotents can be constructed. If S is an asymptotically flat
(n − 1)-dimensional submanifold on which a constant idempotent is defined in
terms of a constant spin frame, parallel transport along geodesics from each
point of S defines a unique position-dependent extension of the idempotent in
a patch P of the manifold. In an earlier model which describes the electroweak
interactions of leptons, with a simplification of the Glashow Lagrangian, the
‘right-hand’ part of the two-sided spin connection gives rise to new gravitational
terms. The nature of these new terms is discussed.

PACS numbers: 02.10.Ud, 02.20.Hj, 02.40.Hw, 04.50.+h
Mathematics Subject Classification: 11E88, 15A63, 15A66, 53B15, 53B25,
53Z05, 53C07, 53C60, 53C80, 83E15

1. Clifford manifolds

In a series of papers, the author, in collaboration with Dr Ruth Farwell, has developed models
of the elementary particles of one family and their interactions [1–6]. Our aims have been
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(a) to base each model on a single specific Clifford algebra, using the unique irreducible
representation, with fermions described by the Dirac equation;

(b) to derive the observed interactions, including gravitation, from gauge groups generated
within the chosen algebra;

(c) to avoid the introduction of unobserved particles such as supersymmetric particles, or
complex structures such as strings.

The inclusion of gravitation led us to develop a simple structure which we have called a
Clifford manifold, and later we gave an informal description of this concept [7] While it is
possible to formulate this idea within the standard fibre bundle context, Clifford manifolds
then appear to be degenerate, as we shall see.

Several standard concepts enter the description of Clifford manifolds. An n-dimensional
manifold consists of a union of a countable number of patches, and each patch corresponds
to a continuous range of n real variables x ≡ {xµ; µ = 0, 1, 2, . . . , n − 1}. In this paper we
consider only a single patch P, and do not study global manifold properties.

The fundamental equation defining a Clifford manifold is the anticommutation relation

{eµ(x), eν(x)} = 21gµν(x) (1.1)

relating the non-degenerate metric matrix gµν(x), µ,ν = 0, 1, 2, . . . , n − 1, and the ‘frame
field’ elements eµ(x). At each point x, the frame field elements are assumed to span a linear
space, the tangent space at x. Their vector transformation properties under non-degenerate
coordinate transformations are detailed below. The elements eµ(x), for fixed x, are also
assumed to multiply associatively, and so to generate a Clifford algebra, as described in
section 2. Throughout this paper, bold symbols are used to indicate elements of the local
algebra. The symbol 1 represents the universal unit of the algebra, and is common to all
points x; the consistency of this assumption will be discussed in section 8. The specific
inclusion of this universal element is important in the discussion of the transformation
properties of different types of geometro-physical fields. As we shall detail below and in
section 2, the elements eµ(x) transform non-trivially not only as vectors under the group of
coordinate transformations, but also as vectors under spin group transformations in the tangent
space. We shall refer to vectors under the coordinate transformation group as ‘Riemannian
vectors’, but, because of the spin group property, we also say that eµ(x) are ‘spin vectors’.
The double classification of fields under coordinate and spin group transformations is of
fundamental importance.

The other basic equation defines the increment of displacement on P as

ds = eµ(x) dxµ. (1.2)

If we consider (1.1) in the standard differential geometrical context, the metric matrix would
enter the definition of a metrical base space. However, we shall see that the frame field
automatically defines the spin structure, which is normally defined separately as a bundle.
Since, in our models using higher-dimensional spaces, gauge groups also arise from the frame
field, it is impossible to separate the fibre structure from the base space. All geometro-physical
entities arise from the two relations (1.1) and (1.2).

The patch P can be covered by a new real coordinate system {yν(x); ν = 0, 1,
2, . . . , n − 1} provided that the partial derivatives ∂yν/∂xµ are continuously differentiable
a sufficient number of times, and the Jacobian determinant |∂yν/∂xµ| is non-zero. Then the
increments of the two coordinate systems are related by

dyν = (∂yν/∂xµ) dxµ. (1.3)
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We note that {dxµ} and the coordinate derivatives {∂µ} are not, as in some formulations of
differential geometry, taken to be Grassmannian vectors or covectors. All anticommutation
properties stem from the basic relations (1.1).

The coordinate transformations (1.3) belong to the group GL(n), and the increment of
length ds defined by (1.2) is postulated to be invariant under this group. It follows that the
frame field vectors eµ(x) transform contragrediently under coordinate transformations:

êν(y) = (∂xµ/∂yν) eµ(x). (1.4)

In space–time, ds is the increment of proper time, and is, correctly, invariant under coordinate
transformations. This group of transformations is fundamental to one of the basic principles
governing physical theories:

Principle 1. Any equation describing a physical system must transform covariantly under the
general linear group of coordinate transformations.

This principle is very familiar, and is, for example, basic to general relativity. Since the metric
is non-degenerate on P, it has a definite fixed signature (p, q), with p + q = n, and this signature
is unchanged under real coordinate transformations, since the basic relation (1.1) ensures that
(gµν) transforms as a tensor.

2. Tangent space and the spin group

At any particular point x of P, the frame field components

eµ(x) (µ = 0, 1, 2, . . . , n− 1) (2.1)

span the n-dimensional tangent space Tx at x. We can therefore define real linear combinations
of the set {eµ(x)} which form orthonormal sets of vectors {cr (x); r = 0, 1, 2, . . . , n − 1} in Tx,
satisfying the orthonormality relations

{cr (x), cs(x)} = 21ηrs (2.2)

where ηrs is the Minkowski metric matrix Diag(1, . . . , 1, −1, . . . , −1), with signature (p, q).
The algebra generated by the spin vectors cr (x) is, for each x, the Clifford algebra Clp,q.

The linear relations between the two sets of basis vectors can be expressed as

eµ(x) = hµ
r(x)cr(x) (2.3)

where the coefficients hµr(x) constitute the ‘vielbein field’. If we substitute (2.3) into (1.1)
and use (2.2), we obtain the standard relation

ηrshµ
r(x)hν

s(x) = gµν(x). (2.4)

The set of orthonormal frames {cr (x)} satisfying (2.2) has both physical and mathematical
significance. The continuous group of transformations between different orthonormal frames
is generated by the bivectors crs (x) ≡ cr (x)cs(x) (r < s) of the algebra, and is the spin group
Spin(p, q), a subgroup of the Clifford–Lipschitz group [8]. If Λ(x) is an element of the group,
an arbitrary spin vector c(x) = ∑

arcr (x) transforms to

č(x) = �(x)c(x)�−1(x). (2.5)

We note that an orthonormal set of spin vectors, satisfying (2.2), remains orthonormal under
this group. A ‘two-sided’ spin group transformation (2.5) is equivalent to a ‘one-sided’
operation of a matrix which acts as a rotation on the column formed from the components
cr (x) of c(x). This justifies calling c(x) a ‘spin vector’.
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Table 1. Behaviour of different fields under coordinate and spin transformations.

Element Name Coordinate group Spin group

gµν(x) I Metric tensor Symmetric tensor Scalar
Vµ(x) I Riemannian vector Covariant vector Scalar
eµ(x) Frame field vector Covariant vector Two-sided
ψ(x) Column spinor Scalar One-sided

We define the operation of the spin group on eµ(x) as the operation (2.5) on each basis
vector cr (x), the coefficients hµr(x) being kept fixed. It would be possible to transform the
coefficientshµr(x) by a matrix operation on the superfix ‘r’, cancelling the rotational operation
on the components cr (x). Fixing hµr(x)makes precise the ‘spin vector’ property of eµ(x). We
note that the algebraic unit 1 is invariant under a spin group transformation of the form (2.5).

Physically, Cl1,3 is the algebra corresponding to the space–time of special relativity,and the
group Spin(1, 3) is the proper Lorentz group of space rotations and boosts, relating different
orthonormal frames {cr}. This group also plays an important role in general relativity, as
Weinberg [9], building on ideas of Utiyama [10] and Kibble [11], has emphasized: the set of
space–time coordinate frames in which there is, locally, zero gravitational force, are related
by the Lorentz group, of which Spin(1, 3) is the continuous part.

More generally, an orthonormal basis {cr} satisfying (2.2) delineates the grades of an
algebra, since the basis elements of grade k are just products of k different basis vectors.
Products of k vectors of a non-orthonormal basis {eµ} are in general of mixed grade.

This physical and mathematical significance of orthonormal bases underlies the second
principle which we postulate to be fundamental to physical theories:

Principle 2. Any equation describing a physical system must be covariant under
transformations of the relevant spin group Spin(p, q).

Weinberg [9] has noted the independence of principles 1 and 2, and that, in space–time,
each is basic to theories involving gravitation and particles with spin. Earlier, Kibble [11]
considered covariance under the Lorentz group operating on column states, together with
local coordinate transformations under Poincaré algebra; he did not introduce the concept of
a curved manifold initially, but the Poincaré transformations were eventually interpreted as
‘general coordinate transformations’, and the Greek suffixes involved were associated with a
space–time dependent metric. Kibble also noted the independent action of the coordinate and
spin groups, in agreement with Weinberg. For Kibble, however, the vierbein field appears as
the gauge field of the translation part of the Poincaré group; this contrasts with the appearance
of the vielbein field as coefficients in our relations (2.3) between the frame field and the
orthonormal frames characteristic of the Clifford structure. We shall discuss this difference in
section 10.

In order to demonstrate the independence of the coordinate and spin groups, we list in
table 1 several classes of algebraic quantity, together with their behaviour under
transformations of the coordinate and spin groups. As in the main text of the paper,
Greek suffixes label vector and tensor components; their transformation properties under
the coordinate group are based on (1.4). Covariant and contravariant vector fields, with
components Vν(x) and Wλ(x) respectively, can be introduced, as for Riemannian manifolds,
through the increment of distance Vν(x) dxν and directional derivative Wλ(x)∂/∂xλ. The
components Wλ and Vν have, as usual, coordinate group transformation rules similar to
(1.3) and (1.4). On a Clifford manifold, ‘Riemannian vectors’ are defined to contain the
factor 1, ensuring that they have trivial scalar transformation properties under spin group
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transformations. In contrast, the spin group action on eµ(x) is of the ‘two-sided’ form (2.5);
this action distinguishes the frame field from Riemannian fields. As for Riemannian vectors,
the metric matrix in the basic equation (1.1) also occurs with a factor 1, indicating that it is
also a spin scalar.

In our earlier models [1–4], column spinors represented fermions. The one-sided action
of the spin group on column spinors, and on conjugate row spinors, is discussed in section 3.

In sections 3 and 4, we shall link ‘connections’ on a Clifford manifold to transformation
properties under the two groups (coordinate and spin). In sections 6 and 7, we shall see that the
algebraic spinors we define have two-sided spin group transformations of the form (2.5), and
in consequence have two-sided spin connection, different to the ‘one-sided’ spin connection
of column spinors.

3. Connections: the uniformity assumption

It is well known that, on a Riemannian manifold, the coordinate derivatives ∂µ≡ ∂/∂xµ are not
covariant, and have to be replaced by covariant derivatives if principle 1 is to be satisfied. The
covariant derivatives of covariant and contravariant fields, with components Vµ(x) and Wλ(x)
respectively, on a Riemannian manifold are defined in terms of the Riemannian connection

�µν
λ = 1

2g
λσ (∂µgνσ + ∂νgµσ − ∂σ gµν). (3.1)

They are

DµVν = ∂µVν − �µν
λVλ (3.2)

and

DµW
λ = ∂µW

λ + �µν
λWν. (3.3)

On a Clifford manifold, these fields are multiplied by the spin scalar 1, which is invariant under
spin transformations and also under displacements on the manifold, leaving these covariant
derivatives essentially unchanged. So if (3.2) and (3.3) are multiplied by 1, they then apply to
Clifford manifolds.

In table 1, it is noted that the spin group action on a column spinor is one-sided, compared
with the two-sided action (2.5) on an element of the algebra. Specifically, the one-sided action
on a column spinor ψ(x) and a bar-conjugate (generalized Dirac conjugate) row spinor is

ψ(x) → �(x)ψ(x), ϕ(x) → ϕ(x)�−1(x). (3.4)

In space–time, when the spin group action is interpreted as a Lorentz transformation, this
one-sided action accords with the experimental properties of electrons and other fermions.

It has usually been assumed that gauge transformations of spinors are also of the form
(3.4), since a right-handed action on a column spinor is restricted to scalar multiplication.
However, we have recently studied the possibility of using algebraic spinors, defined as left
ideals of an algebra, instead of column spinors [12]. Idempotents, and hence ideals of the
algebra, are themselves elements of the algebra, in contrast to column spinors, which are
acted on by elements of the algebra. In quantum mechanical language, algebraic spinor
‘states’ belong to the same algebra as the ‘operators’. For this reason, we examined the
postulate that algebraic spinors undergo two-sided gauge transformations of the form (2.5).
These two-sided gauge transformations, applied [12] to our model of Glashow’s electroweak
interactions [13], led to a simplification of the gauge generator. The effect of using two-sided
gauge transformations will be discussed in more detail in section 9. For now, we simply note
that a change to two-sided gauge transformations necessarily gives rise to a change in the form
of the spinor connection.
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To derive the covariant derivative of a column spinor ψ which is subject to a one-sided
gauge transformation (3.4), we shall follow the spirit of Weinberg’s argument [14], which
depends upon principles 1 and 2. Weinberg, however, does not assume the properties of a
Clifford manifold. He bases his work on the ‘tetrad field’, consisting of four Riemannian
vector fields, which do not have the same spin transformation properties as the frame field.
He then introduces spin separately. This procedure accords with the fibre bundle concepts of
separated base space (tetrad field) and fibre (spin). As we have already emphasized, Clifford
manifolds, based upon the frame field, incorporate all properties in definitions (1.1) and (1.2).

Weinberg derived a unique covariant derivative using principles 1 and 2. In the context
of this paper, however, the derivation of this unique result depends on making a further
assumption about the derivatives of physical fields:

Uniformity assumption. The derivative ∂µF of any field F of grade k in a Clifford algebra is
also of grade k.

This assumption ensures that a displacement of a field on the manifold does not change the
grade of the field. For example, the electromagnetic field, which is a bivector field in space–
time, is a bivector field everywhere and for all time. Geometrically, the non-preservation
of grades would mean that physical dimensionality changed from point to point. We are
accustomed to accepting the analogous property when we consider Riemannian vector fields,
which are assumed to possess the vector property everywhere. In the absence of the uniformity
assumption, algebraic grades could be mixed through automorphisms of the algebra. If, as
we assume, the physical dimensionality of an algebraic quantity is related to the algebraic
grade, grade mixing would lead to puzzling geometro-physical consequences, as noted by
Pezzaglia [15]. In his exploration of invariance under the automorphic group of the algebra,
he generalizes our notion of a ‘Clifford manifold’. In the present paper, we maintain the
original definition, so that Clifford algebraic vectors are distinguished by their appearance in
(1.1) over a patch.

If a column spinor undergoes a one-sided gauge transformation (3.4), it is necessary to
introduce a gauge potential with components Gµ(x) in order to define a covariant derivative

δµψ ≡ ∂µψ + Gµ(x)ψ. (3.5)

Then, when ψ undergoes the gauge transformation, Gµ(x) must transform according to the
usual rule,

Gµ → ΛGµΛ−1 − (∂µΛ)Λ−1. (3.6)

A transformation Λ(x) is generated by bivectors crs, and an infinitesmal transformation is of
the form

�(x) = 1 + 1
2ω

rs crs = 1 + ω(x). (3.7)

Then the infinitesmal form of (3.6) is

Gµ → Gµ + [ω,Gµ] − ∂µω. (3.8)

In addition to satisfying the transformation rule (3.8), Gµ must be a coordinate vector. Further,
since, by the uniformity assumption,∂µω is a coordinate vector and a Clifford (or spin) bivector,
Gµ must be a coordinate vector which is the sum of a spin bivector and an arbitrary spin scalar
field. This arbitrary vector field has sometimes been identified in space–time, by other authors,
as the electromagnetic potential, but in this paper it is assumed to be identically zero.

To identify the bivector field Gµ, note that eν(∂µeν) is a bivector plus a scalar, and that it
transforms by

eν(∂µeν) → eν(∂µeν) + [ω, eν(∂µeν)] + eν[∂µω, eν]. (3.9)
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Since ∂µω is a bivector, the generalization (A1) of old formulae [16, 17], established in
appendix A, gives, with n = 0 and n = 2,

eν[∂µω, eν ] = eν∂µω eν − n∂µω = −4∂µω. (3.10)

Thus (3.9) becomes

eν(∂µeν) → eν(∂µeν) + [ω, eν(∂µeν)] − 4∂µω.

Likewise

(∂µeν)eν → (∂µeν)eν + [ω, (∂µeν)eν] + 4∂µω.

Forming the bivector commutator from these expressions, we see that the expression
1
8 [eν, (∂µeν)] (3.11)

gives the correct transformation (3.8), and is the only bivector containing the derivative ∂µ
which does so. However (3.11) is not covariant under coordinate transformations. So the
unique bivector satisfying the two covariance conditions and the uniformity assumption, is

Gµ = 1
8 [eν, (Dµeν)] (3.12)

where Dµ is the Riemannian covariant derivative defined by (3.2).
Expression (3.12) is well known, but Fairchild [18] has given a more general form for

the spin connection, showing that the uniformity assumption needs to be made in order to
establish the uniqueness of (3.12).

4. The frame field connection: the covariant constancy identity

In space–time, frame field components eµ are represented by the Dirac matrices γµ on the
manifold, and the connection for these matrices has been studied by many authors. Shortly after
Dirac’s theory of the electron was published, Fock and Ivanenko [19] discussed the covariant
derivative of spinors, introducing the matrices γµ both as generalizations of the Dirac matrices
and as vectors defining the element of length of the form (1.2) in the ‘geometrie quantique
lineare’ of space–time. At that time, it was not generally realized that the Dirac algebra
was a particular Clifford algebra, but Fock and Ivanenko were in fact treating space–time
as a Clifford manifold. The phrase ‘quantum geometry’ also foreshadows the more general
concept of non-commutative geometry developed by Connes [20] and others, which offers
an approach to the global properties of manifolds. When Clifford algebras are introduced
within this more general framework, the resulting structure appears to be similar to a Clifford
manifold.

The geometric interpretation of γµ, or more generally eµ, has been emphasized by, for
example, Green [21] in discussing teleparallelism, by Hestenes and Sobczyk [22], and as
the ‘frame field’ in our own work [2, 7]. Chern [23] has used the ‘frame field’ as a basic
geometrical concept, but for him, the component vectors are not assumed to satisfy the basic
Clifford relation (1.1).

In 1932, Schrodinger [24] discussed the covariant derivative of γµ in space–time, and
showed that it had to be of the form

∇µγν = ∂µγν − �µν
λγλ + [Mµ,γν] (4.1)

where Mµ is a ‘vector of matrices’. In addition, he stated that it was necessary for this
equation to satisfy principles 1 and 2. The generalization of (4.1) to a manifold of arbitrary
dimensionality is

∇µeν = ∂µeν − �µν
λeλ + [Mµ, eν] (4.2)
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and we can derive the value of Mµ from the fact that the product eνψ is assumed to exist and
to be a column spinor. Since it is also a coordinate vector, its covariant derivative, containing
both Riemannian and spin connections, is

∂µ(eνψ)− �µν
λ(eλψ) + Gµ(eνψ) (4.3)

where Gµ is given by (3.12). The three forms of covariant derivative (3.5), (4.2) and (4.3) are
mutually consistent only if Mµ = Gµ, so that (4.2) becomes

∇µeν = ∂µeν − �µν
λ eλ + [Gµ, eν]. (4.4)

Not surprisingly, the spin connection for a frame field vector eµ isthe same as that for a column
spinor ψ . However, while Gµ acts only on the left on ψ in (3.5), it has a ‘two-sided’ action in
the commutator in (4.4). This accords with the two-sided action of the spin group operator in
(2.5): the commutator form in (4.4), together with the Riemannian connection, ensures that
∇µeν is covariant under both coordinate and spin groups. Note that the vector connection
�µν

λ is the standard Riemannian connection (3.1), symmetrical in the lower suffixes; it is well
known that the spin connection term [Gµ, eν] in (4.4) can be related to the introduction of
torsion, but it is treated separately in this paper.

We have derived the form of Gµ by assuming the two covariance principles and the
uniformity assumption. An alternative approach, followed by Brill and Wheeler [25], Fletcher
[26], Loos [27] and ourselves [2], is to assume that the frame field is parallel transported, so
that ∇µeν = 0, or from (4.4) and (3.2),

Dµeν + [Gµ, eν] = 0. (4.5)

Forming the contracted commutator of this equation with eν gives

[eν,Dµeν] + [eν, [Gµ, eν]] = 0.

If we now make the uniformity assumption, it follows that Gµ is a bivector (apart from the
arbitrary Riemannian vector field), and, again using (A1) with n = 0 and n = 2, this equation
reduces to

[eν,Dµeν] − 8Gµ = 0

so that Gµ is again given by (3.12).
However, the fact that (3.12) can be derived from (4.5) by contraction does not ensure that

(3.12) satisfies (4.5), which has to be true for all values of µ and ν. On a Clifford manifold,
(4.5) is in fact an identity. However, the proof is non-trivial, so we state the result as a formal
theorem, giving the proof in appendix B.

Theorem 1 (The covariant constancy identity). The bivector spin connection

Gµ = 1
8 [eν, (Dµeν)]

given by (3.12), identically satisfies (4.5) on a Clifford manifold, so that

∇µeν ≡ ∂µeν − �µν
λeλ + [Gµ, eν ] ≡ 0. (4.6)

It is essential to note that the proof of this theorem depends upon (1.1), and so is only true
for Clifford manifolds, or when some equivalent assumption is made. Since the derivation of
(3.12) is based on the symmetry and uniformity principles, these principles and equation (1.1)
establish that (4.6) is an identity satisfied by a previously determined function Gµ. It is
important to emphasize the contrast with the common approach in which (4.5) is assumed,
with (3.12) as a consequence.
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Geometrically, (4.6) ensures that the frame field {eν} is necessarily covariantly constant
on a Clifford manifold. At first sight, this may seem a surprising result. But, in essence,
we have defined the manifold to be the frame field, so that (4.6) can be seen as a consistency
condition—the frame field is covariantly constant relative to itself.

Differentiating (1.1) and using (1.1) itself, we find that identity (4.6) implies the standard
assumption of covariant constancy of the metric tensor:

Dµgµν = 0. (4.7)

However, (4.6) is a result involving both the metric and the spin structure, and so is a stronger
condition than (4.7).

The covariant constancy identity is central to the results of later sections of this paper,
in which we define algebraic spinors on a Clifford manifold in terms of Riemannian vector
fields. Riemannian vectors have only the Riemannian connection, and spinors have only a
spin connection. We shall use (4.6), which incorporates both connections, to link vector fields
with algebraic spinor fields.

5. Orthonormal vector fields

In this section, we summarize some known results about Riemannian vector fields and
geodesics. For the present, we omit the Clifford scalar 1 from our definition of Riemannian
fields.

Corresponding to a non-null incremental displacement dxµ a manifold, the increment of
‘proper time’ dt is defined by

dt2 = ±gµν dxµ dxν (5.1)

with plus (minus) sign corresponding to a time- (space-) like displacement. The corresponding
velocity components

ẋµ = dxµ/dt (5.2)

satisfy

gµν ẋ
µẋν = ±1. (5.3)

Now suppose that a smooth curve C has ẋµ tangent at each point x. Then a vector Wν is
parallel transported along C if it satisfies

ẋµDµW
ν(x) = ∂Wν(x)/∂t + ẋµ�µλν(x)Wλ(x) = 0 (5.4)

at every point of C. If the velocity ẋµ is itself parallel transported, so that (5.4) becomes

ẍν + �µλν(x)ẋµẋλ = 0 (5.5)

then C is a geodesic, and t is a corresponding affine parameter.
At any non-degenerate point on an n-dimensional manifold, n non-null incremental

displacements dxrµ (r = 0, 1, . . . , n − 1) can be chosen which are mutually orthogonal
relative to the manifold metric. Then the corresponding velocity components

Wr
µ = ẋr

µ (r = 0, 1, . . . , n− 1) (5.6)

satisfy the orthonormality relations

gµνWr
µWs

ν ≡ gµνẋr
µẋs

ν = ηrs (5.7)

where ηrs is the Minkowski matrix corresponding to the signature (p, q).
If the n vectors satisfying (5.7) are parallel transported along a curve C with tangent

W0
µ ≡ ẋ0

µ, then they will satisfy (5.4); the curve C will be the geodesic (5.5) with ẋµ ≡ ẋ0
µ,

and the corresponding ‘proper time’ t will be the affine parameter.
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We note two important properties:

(a) From (5.4), it follows that the inner products of Riemannian vectors, and hence the
orthonormality relations (5.7), are preserved under parallel transport.

(b) Since any incremental displacement initially orthogonal to the geodesic tangentW0
µ has

components of the form

δxµ =
n−1∑
r=1

ẋr
µδr =

n−1∑
r=1

Wr
µδr (5.8)

for some increments δr, the displacement is orthogonal to the geodesic everywhere on C:

gµνW0
µδxν = 0. (5.9)

In physical applications, we frequently wish to know how a function given on a space-like
surface can be extended to space–time. More generally, Wald [28] has discussed a method
of extending a function given on a smooth non-degenerate ‘surface’ S, part of an (n − 1)-
dimensional submanifold, to a tubular region of an n-dimensional manifold M. It is assumed
that S is parametrized by the n − 1 coordinates xµ (µ = 1, 2, . . . , n − 1), and that the
remaining continuous coordinate on M is taken to be x0 = t, an affine parameter corresponding
to geodesic displacements, starting in a normal direction from each x on the surface S. Then,
given a smooth fieldWµ (t = 0, x1, x2, . . . , xn−1) on S, it can be smoothly extended by parallel
transport to some tubular neighbourhood 0 < t < t0 of S, on which the geodesic structure is
non-degenerate [28, 29]. This ensures the existence of an n-dimensional patch P on which the
parallel transported field Wµ (t, x1, x2, . . . , xn−1) is a well-defined smooth function of the n
parameters.

We wish to use this method to extend n fields of the form (5.6), satisfying the
orthonormality relations (5.7) on S. Then property (a) above will ensure that (5.7) is satisfied
on the patch P. Since the metric is assumed non-degenerate, it is always possible to choose n
fields (5.6) which satisfy (5.7) at every point x of S. For example, the fields can be chosen at
one particular point x0 on S, and extended smoothly by parallel transport to a neighbourhood of
x0 [30]. However, for a general manifold, there is no simple unambiguous ‘recipe’ for relating
the fields (5.6) at different points of S. As we shall see in the next section, this ambiguity is also
a problem when we come to define an equivalent on a manifold of a ‘constant idempotent’, on
which the concept of an algebraic spinor depends.

This ambiguity does not arise if the manifold M is flat in some (n − 1)-dimensional
region. If the surface S lies in this flat region, the fields (5.6) can be parallel transported, by
translation, in every direction throughout S, defining a ‘constant’ Riemannian frame there. It
is then possible to use geodesic parallel transport from the points of S, as described above, to
define a unique frame throughout a patch P, which is an extension of the constant frame on S.
Property (b) above ensures that the orthonormality (5.9) of incremental displacemants on S
to the geodesics also applies to the parallel transported displacements. It can also be shown
[28, 29] that the points on the geodesics with the same value of the affine parameter t form a
smooth surface St which is orthonormal to the geodesics. So the orthogonality properties of
the geodesics, the fields Wr

µ, and the surface S, are true of every surface St in the patch P.

6. Spin elements

One important fact about identity (4.6) is that the spin connection Gµ appears in the
commutator, in contrast to the ‘one-sided’ occurrence in (3.5). In this section, we shall
define ‘spin elements’, which also have a two-sided spin connection of commutator form.
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Then in section 7, these spin elements will be used to define idempotents, and hence algebraic
spinors ψ on a Clifford manifold, which again have a two-sided commutator spin connection
of the form

[Gµ,ψ]. (6.1)

We use bold type for an algebraic spinor since, unlike a column spinor, it is a true element of
the algebra. In (6.1), in addition to the usual bivector interaction term Gµψ for a spinor, an
extra ‘right-handed’ interaction term −ψGµ appears. The effects of the extra interaction term
will be discussed in section 9. For the present, we simply note that the ‘two-sided’ interaction
term (6.1) is of the same form as a general form of interaction introduced recently [12] in flat
spaces, on a quite different basis. We argued that ‘two-sided’ gauge potentials for algebraic
spinors, of the form

[Aµ,ψ] (6.2)

were consistent with the fact that these spinors ψ were constructed from general elements of
a Clifford algebra, which have two-sided gauge transformations. So, if we interpret (6.1) as a
gravitational interaction of the spinor ψ, it is consistent with the form (6.2) already proposed
for flat spaces.

A ‘spin element’ is formed by contracting the frame field with a contravariant Riemannian
vector field with componentsWν (x), giving

W(x) = Wν(x)eν(x) (6.3)

which is a coordinate scalar and a spin vector. This contraction is similar to that used by Bade
and Jehle [31] in deriving ‘second rank spinors’ from ‘world vectors’ in their discussion of
quadratic forms of vector fields.

Using definition (6.3) and the covariant constancy identity (4.6),

∂µW(x) + [Gµ(x),W(x)] = {∂µWν(x)}eν(x) +Wν(x){∂µeν(x) + [Gµ(x), eν(x)]}
= {

∂µW
ν(x) + �µρ

νWρ(x)
}

eν(x). (6.4)

This contains the covariant derivative ofWν (x), and is therefore doubly covariant, being both a
coordinate vector and a spin vector, but the spin connection on the left of (6.4) is of two-sided
commutator form. We shall be considering products of a set of spin elements {Wr (x); r = 0,
1, 2, . . . } of the form (6.3), formed from Riemannian vector fields with components Wν

r (x).
When we differentiate a product of spin elements using Leibnitz’ rule, the derivative ∂µ can be
considered as an operator commuting through the product, and each separate derivative (∂µWr)
can be appropriately expressed as a commutator [∂µ, Wr]. Then the covariant derivative of
Wr (x), on the left of (6.4), is written as the commutator

[∂µ + Gµ(x),Wr (x)]. (6.5)

So the operator ∂µ + Gµ acts as a derivation, and we can use Leibnitz’ rule to form the covariant
derivative [

∂µ + Gµ,
∏
r

Wr (x)

]
(6.6)

of a product of several spin elements. Expression (6.6) is covariant, since each term in the
Leibnitz expansion contains a single covariant derivative of the form (6.5). We have therefore
established

Theorem 2. If {Wr (x); r = 0, 1, 2, . . .} are a set of spin elements corresponding to
Riemannian vector fields with components Wν

r(x), then the covariant derivative of any
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polynomial p{Wr (x)} in the corresponding spin elements is

[δµ, p{Wr (x)}] ≡ [∂µ + Gµ(x), p{Wr (x)}] (6.7)

with two-sided spin connection.

To establish a further key theorem, consider the Clifford scalar product of two spin
elements. From definition (5.3) and the fundamental equation (1.1),

Wr (x) · Ws(x) = 1
2 {Wr (x),Ws(x)}

= 1
2 Wµ

r(x)Wν
s(x){eµ(x), eν(x)}

= gµνWµ
r (x)Wν

s(x)1. (6.8)

So we have established

Theorem 3. If Wµ
r(x) are the components of a set (r = 0, 1, 2, . . . ) of Riemannian vector

fields, the Clifford scalar product Wr (x) · Ws(x) of any two of the corresponding spin elements
has magnitude equal to the inner product of the Riemannian fields relative to the manifold
metric.

In section 5, we introduced sets of n Riemannian fields satisfying the orthonormality
relations (5.7). Theorem 3 ensures that the corresponding spin elements satisfy the tangent
space orthonormality relations, similar to (2.2):

Wr (x) · Ws(x) = ηrs1. (6.9)

Further, if the Riemannian fields are chosen to satisfy (5.7) on an (n − 1)-dimensional surface S,
and are geodesically parallel transported, as in section 5, to a surface St, then, using (6.4), it
follows that the spin elements Wr (x) are parallel transported, satisfying the equation

ẋµ[∂µ + Gµ(x),Wr (x)] = 0. (6.10)

Using (3.12), this equation can be expressed in terms of the frame field and its derivatives:

∂Wr/∂t + 1
8 ẋ

µ[[eν, (Dµeν)],Wr ] = 0. (6.11)

Likewise, any polynomial in the set {Wr } is parallel transported to St by

ẋµ[∂µ + Gµ(x), p{Wr (x)}] = 0. (6.12)

The constancy of the scalar products Wr (x) · Ws (x) in (6.9) under parallel transport can be
checked directly, using (6.10).

7. Definition of idempotents and algebraic spinors

In a flat n-dimensional space, an algebraic spinor ψ(x) is of the form

ψ(x) = E(x, cr )U(cr ) (7.1)

where E(x, cr) is a general position-dependent element of the appropriate Clifford algebra, and
U(cr) is a constant idempotent satisfying

U2 = U. (7.2)

The spinor is defined in terms of a chosen orthonormal vector basis, satisfying (2.2), which is
constant in the flat space.

When we are dealing with a curved Clifford manifold, the fact that each point of the
manifold has a separate tangent space is crucially important. In flat spaces, the algebras
in the tangent spaces can be uniquely related by translation to define a ‘constant algebra’.
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For regions of general curved manifolds, there is no unique way of relating the algebras in the
different tangent spaces. The problem is analogous to defining a manifold generalization of a
plane wave, which possesses translational invariance in flat spaces. This analogy prompts the
suggestion that an idempotent, and hence an algebraic spinor, be defined on a non-degenerate
flat surface S, part of an (n − 1)-dimensional flat submanifold. We therefore assume that
the patch P contains such a surface S. Then the definitions of idempotents and spinors can
be uniquely extended over the patch by the method described in sections 5 and 6.

This procedure is similar to that used in the definition of an S-matrix, where interactions
are assumed to be negligible for asymptotic ‘incoming’ and ‘outgoing’ states. In this paper,
we make no attempt at a rigorous analytic study of asymptotic conditions. However, we note
that the problems of self-interaction and long-range forces will arise, as in S-matrix theory. It
is also important to remember that the Bondi–Metzner–Sachs asymptotic group structure is
by no means simple [32].

We assume that, on S, a constant idempotent U(cr) is defined in terms of translation-
invariant vector basis {cr}. This vector basis is then identified on S with a set of spin elements

Wr = cr (r = 0, 1, . . . , n− 1) (7.3)

which satisfy the correct orthonormality relations (6.9). From definition (6.3) of spin elements,
it follows that the associated Riemannian fields are given generally by

Wr
µ(x)1 = eµ(x) · Wr (7.4)

so that on S, or ‘asymptotically’,

Wr
µ(x)1 = eµ(x) · cr (7.5)

where

eµ(x) = gµν(x) eν(x). (7.6)

Through (7.3) and (7.5), the asymptotic spin elements and fields are given in terms of the
chosen asymptotic spin vector basis and the frame field on S. But these spin elements and
fields are parallel transported geodesically by (6.11) and (5.4) through a patch P corresponding
to affine parameter range 0 < t < t0, and so are uniquely determined there. Moreover, the
orthonormality relations (6.9) are preserved under parallel transport.

Through the identification (7.3), a constant idempotent U(cr) on S can be written as
U{Wr (x)}; it now takes the form of a bundle of identical idempotents. Any polynomial, in
particular U{Wr (x)}, is parallel transported by (6.12); and since (6.9) are preserved, U{Wr (x)}
remain idempotent through P. The manifold curvature will generally ensure that Wr (x) are
x-dependent for values outside the asymptotically flat region. The S-matrix analogy is the
distortion a plane wave as it passes through a region of interaction. However, the structure of
the idempotent U{Wr (x)} as a projection operator is the same as that of the constant idempotent
U(cr), as will be exemplified in section 8. So, in a suitable matrix representation, a primitive
idempotent U{Wr (x)} can fill out the same (one, or possibly two) column(s) at all points, and
therefore can be interpreted as a representation of a particular type of fermion.

The rule for geodesic extension of an idempotent U(cr) from the asymptotically flat surface
S to the patch P is the replacement

cr → Wr (x) (7.7)

defining the position-dependent idempotent on the patch P. Since a ‘constant vector basis’ has
no unique well-defined meaning where there is curvature, the replacement (7.7) must be made
throughout the spinor (7.1), so that it takes the form

Ψ(x) = E{x,Wr (x)}U{Wr(x)}. (7.8)
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This is a polynomial in the spin elements Wr (x), so that its covariant derivative is, as in (6.7),

[δµ,Ψ(x)] ≡ [∂µ + Gµ(x),Ψ(x)]. (7.9)

We must therefore take the ‘Dirac operator’ for an algebraic spinor to be of the two-sided form

eµ[δµ,Ψ(x)] (7.10)

with commutator interaction (6.1).
Using (7.4) and the orthonormality of the basis {Wr}, the inverse frame field elements eµ

in (7.10) can be expressed in the form

eµ = ηrsWs(eµ · Wr )

= ηrs WsWr
µ. (7.11)

So (7.10) can be written in the form

WrWr
µ[δµ,Ψ(x)]

where Wr = ηrsWs. However, the parallel transport condition (6.12) ensures that the term
with r = 0 in the summation vanishes, so that the ‘Dirac operator’ acting on the spinor (7.8)
reduces to

n−1∑
r=1

WrWr
µ[δµ,Ψ(x)]. (7.12)

8. Gravitating algebraic spinors: an example

In an early paper [1], we proposed a model, based on the Clifford algebra Cl1,6, of the
electroweak interactions [13] of leptons, and this model was first generalized to include
gravitational interactions [3], and then incorporated into a model describing all of the
interactions of a single family of elementary particles [4]. In this model, the constant
orthonormal set of basis vectors {cr; r = 0, 1, 2, . . . , 6} of Cl1,6 satisfy

c0
2 = −cr2 = 1 (r �= 0) (8.1)

and {cr; r = 0, 1, 2, 3} are taken to be the space–time basis vectors.
The pseudoscalar i of the algebra commutes with every element, and satisfies i2 = −1,

and so is identified with the unit imaginary. If the complete covariant derivative for the theory
is ∂µ − ′Ωµ, where ′Ωµ is any coordinate vector function on the algebra, then the equation of
motion for i is [∂µ − ′Ωµ, i] = 0; and since [′Ωµ, i] = 0 for any interaction, it follows that i is
a universal constant. The same argument ensures the consistency of the assumption that 1, in
the fundamental equation (1.1), is common to all points on the manifold.

In this model, the space–time chirality operators are given by

h± = 1
2 (1 ± iω) (8.2)

where ω = c0123 is the space–time pseudoscalar, and the isospin triplet of operators is

(ρ1,ρ2,ρ3) = (c56, c46, c45). (8.3)

Algebraic spinors in flat 7-space are functional elements of the algebra of the form (7.1),

ψ(x) = E(x, cr )U(cr )

where E(x, cr) is a general element of the algebra and U(cr) is a constant primitive idempotent.
It is assumed that Ψ(x) depends only on space–time coordinates {xµ; µ = 0, 1, 2, 3}. In the
algebra Cl1,6, primitive idempotents are formed from the maximum number, three, of mutually
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commuting elements which square to 1. For reasons which will be explained, we have chosen
the triple to be (c03, ic12, ic45), and the primitive idempotent to be

U = 1
8 (1 + c03)(1 − ic12)(1 − ic45). (8.4)

To include gravitation, we have assumed [3, 4] that the space–time dimensions are curved, but
the ‘higher dimensions’ remain flat. The spinor is assumed to depend only on the space–time
coordinates, so that coordinate covariance applies only to xµ (µ = 0, 1, 2, 3). The spin
connection Gµ contains only the space–time bivectors, and so commutes with cr (r = 4, 5, 6).
So (6.12) ensures that the geodesic extensions Wr = cr (r = 4, 5, 6) are constant on the patch P,
so that ω and the elements (8.2) and (8.3) are also constant.

If we now assume that the spinor is of the form (7.1) on a flat (n − 1)-dimensional
surface S, we can use (7.7) to form the geodesic extension (7.8),

Ψ(x) = E{x,Wr (x)}U{Wr(x)}
to a patch P, with

U{Wr (x)} = 1
8 [1 + W03(x)][1 − iW12(x)][1 − iW45] (8.5)

where Wrs (x) = Wr (x)Ws (x), and W45 = c45 is constant on P.
The theorems of the previous sections ensure that Wr (x) form an orthonormal set on P,

so that (8.5) defines an idempotent for all x. Also, Ψ(x) has covariant derivative

[∂µ + Gµ(x),Ψ(x)]. (8.6)

In (8.6), the commutator

[Gµ(x),Ψ(x)] (8.7)

is assumed to represent the effect of gravitation on the algebraic spinor Ψ(x). So (7.8) and
(8.5) define the form of gravitating algebraic spinors Ψ(x), with two-sided spin connection,
in terms of the orthonormal set {Wr (x)}; these are in turn defined as the unique geodesic
extensions to the patch P of the constant set {cr} given on the flat surface S.

9. Asymmetry of ‘right-handed’ interactions

In our earlier papers, the lepton column spinor ψ(x) was assumed to be invariant under gauge
transformations operating on the left only, as is assumed in standard gauge theories. The
generator of the gauge transformations was of the form

1
2gh+ρiθ

i(x) + 1
2g(h−ρ3 + 1)θ4(x) + cpq�pq(x) (9.1)

with summations over i = 1, 2, 3 and (p < q) = 0, 1, 2, 3. Then the interaction terms acting
on ψ(x), generated by gauge transformations, are[

1
2gh+ρiV

i
µ(x) + 1

2 ĝ(h−ρ3 + 1)V 4
µ(x) + WpqG

pq
µ(x)

]
ψ(x) (9.2)

with the same operator structure as (9.1), as usual, and with the bivector spin connection (3.12)
written as

Gµ(x) = Wpq(x)G
pq
µ(x). (9.3)

The terms in (9.2) all contribute to the Lagrangian density. Here, the bivectors cpq (p, q =
0, 1, 2, 3) have been replaced by Wpq(x), in accord with the rule (7.7). The algebraic
spinor (7.8) has also been modified by (7.7), so it is necessary to consider the effect of this
modification on the variational principle. In flat space theories, we have treated the elements
of the ‘constant’ Clifford algebra as fixed under variations defining the field equations.
Since the algebras with bases {Wr (x)} are geodesic extensions of a constant algebra, we
assume that they also are fixed under variations defining the field equations. So, under these
variations,
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(a) onlyGpq
µ(x) is varied in the bivector term (9.3),

(b) the idempotents, for example, (8.5), are not varied, implying that their physical
interpretation as fermions is unchanged.

In our more recent paper [12], we considered two-sided gauge transformations in flat spaces, on
algebraic spinors of the form given by (7.8) and (8.5). These two-sided gauge transformations
give rise to two-sided interaction terms of the form (6.2). For the class of Clifford algebra
we consider, we proved that the extra ‘right-handed’ interaction term, of the general form
−ΨAµ, always reduced in the Lagrangian to a multiple of Ψ(x)1, which can be written as
1Ψ(x). Although our idempotents change form under the two-sided gauge transformations,
they remain idempotent, and ‘expectation values’, given by traces, remain invariant.

Now, in our model of the lepton interactions [12], part of the operator multiplying V4
µ(x)

in (9.2) is a multiple of 1, with the same coefficient ĝ as the other part of the operator. By
making the specific choice (8.5) of primitive idempotent, we were able to simplify the left-hand
interaction term (9.2) to[

1
2gh+ρiV

i
µ(x) + 1

2 ĝh−ρ3V4
µ(x) + Wpq(x)G

pq
µ(x)

]
Ψ(x). (9.4)

This is because the only non-zero contribution to the right-hand electroweak interaction term
arises from the term

Ψ(x) 1
2 ĝh−ρ3V

4
µ(x)

which, using (8.2) and (8.3), gives precisely the term

1
2 ĝ1V 4

µ(x)Ψ(x). (9.5)

Then (9.4) and (9.5) sum to give the required Lagrangian interaction term (9.2).
This means that the generator (9.1) of the gauge transformations can be replaced by the

simpler operator

1
2gh+ρiθ

i(x) + 1
2 ĝh−ρ3θ

4(x) + Wpq(x)�
pq(x) (9.6)

with the electroweak interactions generated only by elements of the isospin algebra. The
peculiar term in (9.1) containing 1 no longer appears as a generator.

The electroweak gauge group is now more symmetrical between the two helicities; this is
because the choice (8.4) of idempotent to define the ideal representing physically observable
spinors is unsymmetrical, and so gives rise to the symmetry-breaking ‘right-hand’ interaction
term (9.5). A different choice of ‘physical’ idempotent would result in a different symmetry-
breaking contribution to (9.2). For example, changing the last bracket in (8.5) to [1 + iW45]
would change the algebraic coefficient ofW 4

µ(x) in (9.2) to (h−ρ3 − 1). So by choosing (8.5)
as the ‘physical’ idempotent, out of the symmetrical set of eight primitive idempotents, we
allow the possible introduction of physical asymmetries through the ‘right-hand’ interaction
terms. We state this as a general principle for two-sided interactions:

If, out of a complete symmetrical set of primitive idempotents, one is chosen to define the
ideal representing physical states of a fermion, this necessarily introduces an asymmetry in
the spinor structure, and may result in the introduction of asymmetrical ‘right-hand’ physical
interactions.

Expression (9.5) is the only term arising from the electroweak terms in (9.4), but the choice
(8.5) of idempotent also results in extra ‘gravitational’ terms arising from the right-hand
interaction terms
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−Ψ(x)WpqG
pq
µ(x).

This is because the chosen idempotent depends upon the bivectors W03 and W12, which result
in Lagrangian terms proportional to{

1G03
µ(x)− iG12

µ(x)
}
Ψ(x). (9.7)

Additional gravitational terms of the type (9.7) are hard to avoid, in general, in this type of
theory, since most choices of a maximal set of commuting elements of a Clifford algebra
will contain some space–time bivectors. In the present model, the bivector W45 in (8.5)
has been introduced to produce the correct electroweak interaction. Then the introduction
of space–time bivectors in the primitive idempotent is unavoidable. Thus, in this model,
the extra gravitational interaction terms (9.7) are a necessary consequence of the form of
electroweak interactions. The unusual nature of these terms will be discussed in the next
section.

Our ‘two-sided’ interactions differ from those of Trayling and Baylis [33], in a model
also based on a seven-dimensional Clifford algebra. In their model, they use a complete
set of idempotents to incorporate all particles and antiparticles of one family, and different
gauge groups act on the left and the right. This allows them to introduce all non-gravitational
interactions within their seven-dimensional model, whereas we have used 11 dimensions
[4, 6]. So Trayling and Baylis’ interaction terms are only ‘one-sided’, compared with our
two-sided interactions. They do not introduce gravitation, and another difference between
their work and ours is that they introduce a Higgs field, while we generate the boson mass
matrix by interpreting the fermion mass terms as an interaction with the frame field [1, 3, 4].
We shall discuss this interaction term in the following section.

10. Discussion

Many of the properties of Clifford manifolds are shared with other definitions of metric
manifolds. Our reasons for singling out this structure, based on equations (1.1) and (1.2), are,
first, that it is a very specific, simple structure; and second, that we have gone some way, within
this simple structure, to model the properties of particles of a family of elementary particles
and all of their interactions, including gravitation. In the first two sections of this paper, the
properties of coordinate groups on a manifold, and of the spin group on tangent spaces, have
been developed. Various fields have been classified by their transformation properties under
these groups.

The unique connection properties of different fields have then been derived from
postulates of covariance under the two groups, together with the ‘uniformity assumption’
of grade structure on the manifold. It has been known for many years that the frame
field, fundamental to Clifford manifolds, requires both vector and spin connections. A
basic result of this paper is that, on a Clifford manifold, the frame field is necessarily
covariantly constant. This result depends in an essential way on the conciseness of the
Clifford manifold concept, which incorporates both Riemannian curvature and spin structure
in the basic formula (1.1), together with particle gauge generators in higher-dimensional
models. This conciseness can be contrasted, for example, with Weinberg’s approach [14],
in which a tetrad of Riemannian fields and a spin group are introduced separately. In
another approach, Brill and Cohen [34] treat the tetrad frame and the Dirac matrices as
distinct entities, obeying the rules of Grassmann and Clifford algebras, respectively; they
then have to assume that the Dirac matrices are the same in every reference system. Ruth
Farwell and I have long taken the view, in sympathy with Fock and Ivanenko [19], that
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the frame field is both a geometrical and a physical object. We also believe that a single
Clifford algebraic structure, based on (1.1), should provide a unified view of geometry and
physics.

The covariant constancy of the frame field, with both vector and spin connections, leads to
one of the most important results of this paper, a fundamental linking of a Riemannian vector
field with a ‘spin element’, which has ‘two-sided’ covariant derivative of the form (6.5). This
natural and inevitable linkage is quite different from the assumptions of supersymmetry, and
does not involve the introduction of unobserved supersymmetric partners. As a consequence of
this linkage, a set of Riemannian fields, orthonormal at a non-degenerate point on a manifold,
is related to a set of spin elements orthonormal in the associated tangent space; orthonormal
sets of spin elements at different points can be regarded as a bundle of position-dependent
vector bases of a Clifford algebra. So position-dependent idempotents can then be defined
in neighbourhoods of a manifold, which possess a two-sided spin covariant derivative. It
is therefore possible to relate, by parallel transport, the algebras and idempotents at points
along a path on the manifold, using this spin covariant derivative. This contrasts with the
assumption of Brill and Cohen [34] of a constant representation of the Dirac matrices, which
has no covariant meaning.

Although it is possible to use the two-sided spin connection to define values for
idempotents, and hence spinors, over suitable curved patches of an n-dimensional manifold M,
there is generally no unique way of doing this. There is thus an ambiguity in defining a curved
space generalization of constant idempotents, which are used to define algebraic spinors in
flat spaces. We are proposing a method of giving a unique definition of idempotents on a
patch of M, by geodesic extension of a constant idempotent from an (n − 1)-dimensional flat
surface lying in a flat region of M. This process is analogous to the distortion, in a ‘region
of interaction’, of an asymptotically plane wave in scattering theory. This analogy suggests
that it would also be useful to give a unique definition of idempotents and spinors which are
asymptotically represented by ‘outgoing’ spherical harmonics. The well-established methods
of Clifford analysis might well be used to develop this idea, which is beyond the scope of this
paper.

The two-sided ‘Dirac equation’ based on (7.10) or (7.12) is proposed as the equation of
motion of an algebraic spinor subject to gravitation. Through (6.4), this equation is related to a
set of quasi-linear equations governing a set of Riemannian fields satisfying the orthonormality
condition (5.7). But the most significant effect of the new ‘right-hand’ interaction term is the
inevitable appearance, in the model of sections 8 and 9, of the asymmetric interaction terms
(9.7). They have a very interesting form, since their operator dependence, on I, is that required
for a ‘cosmological constant’. Also, their magnitude will be of the same order as the standard
gravitational terms, which is also desirable. However, these terms are not constant, and they
are spacially unsymmetric. It is natural to ask whether they could act macroscopically as a
cosmological term affecting the rate of expansion of the universe. It is also natural to note
that the chosen idempotent (8.5) is time asymmetric through the factor (1 + W03), resulting
in the interaction term 1G03

µ(x) in (9.7), and to ask whether this term can be linked to the
observed time asymmetry of the universe. These new ‘right-hand’ interaction terms appear at
single-particle level, whereas time asymmetry and a cosmological ‘constant’ are macroscopic
concepts. It is not within the scope of this paper to work out the macroscopic or cosmological
effects of these terms.

The frame field, introduced in (1.1), is fundamental to the concept of Clifford manifolds.
Using the absolute identity

γµγµ = 41 (10.1)
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we have expressed the mass term in the Dirac equation as an interaction with the frame
field [1–4]. Since the bivectors of the Dirac algebra have been used as generators of gauge
transformations in (9.1) and (9.6), it is natural to ask whether the vectors of the algebra cannot
be regarded as translational gauge generators, completing the Poincaré group. Many authors,
including Kibble [11], Hehl et al [35] and Lasenby et al [36], have used translational generators
in gravitational gauge theories. However, our models include electroweak interactions,
requiring the specific introduction of the chirality operators h± into the Lagrangian, as
in (9.1). These operators do not commute with the vectors of the algebra, and it is this
non-commutation which has enabled us to explain the boson mass ratios without introducing
Higgs fields [1, 3, 4]. The chirality operators are introduced because we use 4-component
neutrinos; this allows us to introduce neutrino masses, which now seem to be demanded by
experiment. If we included the Clifford vectors as gauge generators, the full gauge group
would be enlarged, requiring the introduction of boson fields which are not observed. So, in
our particular models, the vielbein field hµr(x) is not a gauge field, but simply the coefficients in
expansion (2.3) of the frame field in terms of an orthonormal vector basis. Since we regard the
frame field as the fundamental field defining a Clifford manifold, it is not inconsistent to ascribe
different properties to it and to the gauge-generated fields which describe particle interactions.

Hehl et al [35], like Kibble [11], use the full Poincaré group as an infinitesmal gauge
group, but their analysis leads to the introduction of torsion. In contrast, torsion is built in
to a Clifford manifold through the spin connection, as we discussed in section 4. They use a
Lagrangian purely quadratic in the curvature, which Bicknell [37] has noted presents difficulty
in the coupling of gravitation to matter. Our models [2–4] give a ‘free’ gravitational Lagragian
containing both linear and quadratic curvature terms, and we have pointed out [2] that inflation
in the early universe can be based on a suitable combination of the two types of term.
Hehl et al interpret a part of their interactions generated by the Poincaré group as strong
interactions, but they do not meet up with our difficulty arising from the helicity asymmetric
electroweak interactions.

The theory of Lasenby et al [36] is based on Clifford algebra, expressed in Hestenes–
Sobczyk notation [22]. Their translational gauge transformations are finite, and the
interpretation of their theory is in terms of a flat space–time. The physical predictions overlap
strongly, but not completely, with Poincaré gravitational gauge theories. In this formulation,
spinors can be operated on ‘on both sides’, but they do not introduce two-sided interactions of
the forms (6.2) and (8.7). Their extensive applications include electromagnetic phenomena,
but these are helicity symmetric, so that here is no possibility of non-commutation of the
relevant generators with translational gauge generators. The authors who do include helicity
asymmetric interactions in their Clifford algebraic models are Trayling and Baylis [33]; but
they do not deal with gravitation.

We have remarked in earlier papers on the difference between our treatment of the space–
time dimensions and the higher dimensions. This discrepancy is even more obvious in the
present paper. In the model of sections 8 and 9, the gauge transformations are generated within
both the space–time dimensions 0, 1, 2, 3 and the isospin dimensions 4, 5, 6. However, the
covariant derivatives, and hence the dynamics and the curvature, are restricted to space–time.
The model cries out for the extension of dynamics and curvature to the higher dimensions.
This would allow the compaction of higher dimensions, which is not a novel idea, with
the introduction of the inverse Planck length as a curvature of the higher dimensions, and
might perhaps offer the chance of explaining the fermion mass spectrum in terms of higher-
dimensional dynamics. Since these higher dimensions are, in our models, linked to specific
gauge groups, we have a strong guide to the interpretation of the associated dynamical degrees
of freedom. The author intends to investigate this idea in the near future.
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Appendix A

The following formula is a generalization of a familiar formula for the Dirac algebra [16, 17].
A general k-vector of a Clifford algebra is denoted by E(k). As usual, upper suffix vectors are
defined by eµ = gµνeν. The formula we shall establish is

eµE(k)eµ = eµE(k)eµ = (−1)k(n− 2k)E(k) (A1)

To prove this result, note that expansion (2.3)

eµ(x) = hµ
r(x)cr(x) (A2)

in terms of a local orthonormal basis {cr (x)} implies that

eµ(x) = kr
µ(x)cr(x) (A3)

where the matrix (kr
µ ) is the inverse of (hµr), and cr(x) = ηrscs (x), so that, for each value of r,

crcr = 1. (A4)

Then if E(x) is any element of the algebra,

eµEeµ = eµEeµ = crEcr . (A5)

To establish (A1), note that, for k even, any basis element of grade k anticommutes the k basis
vectors comprising that element, and commutes with the n − k other basis vectors. Since E(k)

is the sum of such basis elements, the sum cr E(k)cr = (n − k − k)E(k). Using (A5), (A1) is
established for even k. A similar argument establishes (A1) for odd k.

Appendix B

To establish theorem 1, consider the double commutator given by substituting Gµ from (3.12)
into the commutator in (4.6). This gives

[[eρ, (Dµeρ)], eν] = T1 + T2 (B1)

where

T1 = −�µρλ (eρeλeν − eλeρeν − eνeρeλ + eνeλeρ) (B2)

and

T2 = eρ(∂µeρ)eν − (∂µeρ)eρeν − eνeρ(∂µeρ) + eν(∂µeρ)eρ. (B3)

Using the formula

{eρ, eν} = 2Iδρν. (B4)

derived from (1.1), and (1.1) itself, (B2) reduces to

T1 = 4�µρλ
(
δρνeλ − gλνeρ

)
= 4�µνλeλ − 4�µρνeρ. (B5)
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To simplify the sum of the first and third terms in (B3), add and subtract eρeν(∂µeρ). This
gives

eρ[2∂µgρν − eρ(∂µeν)− (∂µeν)eρ] − 2δρν(∂µeρ). (B6)

Since (∂µeν) is a spin vector, formula (A1) with n = 0 and n = 1 reduces (B6) to

2(∂µgρν)eρ − 4∂µeν . (B7)

It is interesting that the coefficients n from (A1) cancel out, so that (B7) is true for manifolds
of any dimensionality and signature.

In a very similar way, the sum of the second and fourth terms in (B3) reduces to the same
expression (B7). Thus (B3) is equal to

4(∂µgρν)eρ − 8∂µeν . (B7)

The second term in (B5) can now be combined with the first term in (B7) to give

4(∂µgρν)eρ − 4�µρνeρ = 4�µνρeρ. (B8)

So, adding (B5) and (B7), (B1) becomes

[[eρ, (Dµeρ)], eν] = T1 + T2

= 8�µνρeρ − 8∂µeν .
(B9)

This establishes the covariant constancy identity (4.6).
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